Восемнадцатая Всероссийская Открытая конференция «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА (Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов)»

Коррекция резкости космического изображения высокого разрешения на основе восстановленной цифровой модели рельефа в предельно допустимых условиях орбитальной съемки

Винтаев В.Н. (1), Жиленев М.Ю. (2), Ушакова Н.Н. (1) Белгородский университет кооперации, экономики и права, Белгород, Россия (2) АО «Корпорация «ВНИИЭМ»», Москва, Россия

Исследование выполнено при финансовой поддержке Российского Фонда Фундаментальных Исследований (РФФИ) в рамках научного проекта № 19-07-00697 «Разработка основ системного анализа и моделирования коррекции резкости космических изображений сверхвысокого разрешения на базе модернизации теоретико-типовых математических и семантических подходов для прогноза и реализации максимально возможных характеристик по пространственному разрешению» и научного проекта № 18-07-00201 «Разработка фундаментальных основ мягкого системного анализа и моделирования систем формирования и верификации космических изображений высокого и сверхвысокого разрешения по данным с группировок орбитальных аппаратов в неопределенных и предельно допустимых условиях орбитальных съемок».

Базовая схема предлагаемого метода

 Коррекция резкости и представляемого пространственного разрешения на космическом изображении высокого разрешения с использованием изображения, получаемого от цифровой модели рельефа (ЦМР) зондируемого ареала, выполняется операцией объединения на основе применения нечеткого логического исчисления множеств мод пространственночастотных спектров (ПЧС) исходного изображения и изображения, полученного на процессе рассеяния света на восстановленной по теням ЦМР зондируемого ареала.

Базовая схема предлагаемого метода

 Синтезируемое второе (дополнительное) изображение заведомо может быть реализовано с более высоким значением радиуса ПЧС в соответствии с теоремой Д.В. Агеева (<u>1957 год</u>) и Л.М. Финка (<u>1984год</u>) о том, что у произвольной функции с финитным спектром существуют участки ограниченной длительности, на которых она может меняться сколь угодно быстро. Характерным примером для изображений являются резкие границы образов, и поперечный срез таковых может иметь достаточно широкий спектр Фурье.

1.Для измерения и контроля резкости в формирующей изображение системе используется на ее входе допустимое сближение образов двух (или нескольких) конусовидных метрических импульсов (МИ): минимальное расстояние между их вершинами при обусловленном пределе сближения принято за пространственное или линейное разрешение по Рэлею. Обратная величина этого значения – это пространственная частота, регламентирующая значение разрешения, измеренного по методу Фуко.

МИ, соответствующий измеренному разрешению своим телесным углом при вершине и постоянным размером пятки, определяет (по Гольдбергу) пропорциональное измеренному разрешению значение резкости на изображении и в системе.

2. Ожидаемый профит увеличения резкости в два раза на изображении в технологии идеальных схем сверхвысокого разрешения, реализованной на субпиксельных горизонтальных и вертикальных сдвигах пар формирующих изображений в реальности может быть до 10% ниже. Ситуация усугубляется в предельно допустимых условиях орбитальной съемки (ПДУОС).

3. Предельно допустимые условия орбитальной съемки (ПДУОС) представляются возмущениями оператора восстановления исходного изображения из корректируемого, создающими уменьшение ожидаемого радиуса пространственно-частотного спектра корректируемого изображения.

4. ПДУОС моделируется аддитивными (и/или мультипликативными) возмущениями операторов конволюции, реализующими векторный смаз, констатирующий повышенные значения фактической скорости движения изображения (СДИ) а также изотропный смаз, моделирующий повышенную туманность в атмосфере.

5. Формирование (восстановление) исходного изображения выполняется конволюцией гипотетического изображения с увеличенной резкостью.

На рисунке 1 приведен фрагмент космического изображения высокого разрешения (Ikonos_sandiego_usa_1m) со спутника Ikonos (1 м разрешения на местности) и его пространственно-частотный спектр (ПЧС). Угол места солнца соответствует отклонению вектора облучения от вертикали примерно на 40 градусов (по оценке размеров теней от объектов с известной высотой). Значение этого угла используется в модели рассеяния падающего освещения на синтезированной ЦМР.

Рис.1. Исходное изображение Ikonos_sandiego_usa_1m и его ПЧС

- На утилите конечно-разностной миграции волн реализована модель миграции рассеянного поля с длиной волны в модели γ = 0,3 м отсинтезированной цифровой модели рельефа (ЦМР) изображения Ikonos_sandiego_usa_1m.
- Коррекция резкости на исходном изображении выполняется операцией объединения двух множеств – множества всех мод ПЧС исходного изображения с множеством мод ПЧС нормализованного изображения, полученного в модели рассеяния на ЦМР с обусловленными правилами выбора минимальной по значению из совпавших при объединении по значениям индексов мод в объединяемых ПЧС и обусловленными правилами переиндексации мод спектрарезультата.
- Увеличение радиуса ПЧС обработанного исходного изображения, приведенного на рисунке 2 получено при использовании метода возмущений в модели миграции рассеянного поля с модификацией метода возмущений и вычисления результатов миграции поля в используемом пакете на накопление сигналов, представленных со случайной фазой с длиной волны 0,3 м, с выполнением последующей дообработки изображения оператором деконволюции, построенном на основе оптимизированной частотно-контрастной характеристики тракта зондирования синтезированного в модели рассеяния излучения на ЦМР.

Рис. 2. Изображение Ikonos_sandiego_usa_1m и его ПЧС, полученные при использовании метода возмущений и миграции поля, рассеянного от ЦМР для коррекции резкости исходного изображения с учетом результатов рассеяния на восстановленной ЦМР.

Оценку увеличения радиуса (ширины) ПЧС при выполняемой коррекции резкости целесообразно реализовать для представленного ПЧС со сложной структурой, используя эффективный (или средневзвешенный) радиус спектра.

Выводы

Предлагаемая технология коррекции резкости с точки зрения ее измерения по методу Фуко (по верхней моде ПЧС) адекватна одному из корреляционных алгоритмов выявления сверхвысших мод ПЧС, упоминаемых в теореме Д.В. Агеева для любой (непрерывной) функции и, следовательно, для представленного исходного изображения : «на непрерывной функции можно найти ограниченные участки с произвольно быстрым изменением». Упоминаемые в теореме участки ограниченной длительности могут соответствовать регуляризованному с заданными погрешностями представлению интервалов меры нуль, рекурсивно объединяющихся с интервалом определения исходного изображения в соответствии с итерациями коррекций резкости с нарастающим снижением числа мод продолжения ПЧС (получаемого дискретным преобразованием Фурье) вплоть до исчезновения (на фоне шумов).

Литература:

- 1. Винтаев В.Н., Винтаев В.Н., Ушакова Н.Н. Нетривиальная коррекция космических изображений высокого разрешения. Саарбрюккен, Германия: Lambert Academic Publishing, 2018. 208 с.
- Макриденко Л. А., Волков С. Н., Геча В. Я., Жиленёв М. Ю., Казанцев С. Г. Основные источники снижения качества изображений земли, получаемых при орбитальной оптической съёмке с борта МКА//Вопросы электромеханики. Труды ВНИИЭМ. 2017. Т. 160. С. 3-19.
- Тюлин А.Е., Свиридов К.Н. Информационные и финансовые потери несовершенного проектирования оптико-электронной аппаратуры космических аппаратов дистанционного зондирования Земли // Информация и космос, 2020. № 1. С. 152-160.